
the maximum droplet diameters are the same. Clearly, fairly different h(s) correspond to 
virtually identical distributions. There is a more marked effect from the choice of maximum 
size. In all our experiments, the maximum diameter was taken as the value of s at which the 
number of pulses constituted 0.02% of the maximum. 

The reliability of the data was examined by recording the distribution by deposition; 
the drops were trapped in a thin layer of silicone oil on a plate of dimensions 2 x 3 �9 i0 -s 
m, the total number of drops being 1240. Curve i in Fig. 4 is from the Wicks--Dukler method 
operating with the above circuit, while curve 2 is from the deposition method. The agree- 
ment is satisfactory, particularly in the region of the mode. 

NOTATION 

Re = c~p/H, Reynolds number; c, drop velocity; 6, film thickness; 0, density of liquid; 
~,dynamic viscosity coefficient of a liquid; f(D), size distribution; fv(D), volume distribution; 
F, cross-sectional area of flow; D, drop diameter; Dm, maximum drop diameter; s, distance 
between electrodes; h, pulse frequency; A, ~, approximation coefficients. 
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SOLID PARTICLE IMPURITY PROPAGATION IN A FLUID FLOW IN A PIPE 

M. V. Lur'e and V. I. Maron UDC 533.73 

A longitudinal dlffusionmodel is proposed for planar flow in which the fluid par- 
ticles and the impurities have different velocities. 

The process of solid particle impurity propagation in an incompressible fluid flow in a 
flat pipe is investigated. The turbulent and convective diffusion processes as well as the 
settling of the particles under the effect of gravity result in the impurity concentration 
varying in both the stream depth and along it. Since the question of impurity pro- 
pagation along the stream is of special interest for applications, a derivation is given 
in this paper for a one-dimensional diffusionmixing model to determine the mean particle con- 
centration over the stream section. The turbulent and convective diffusion mechanisms, par- 
ticularly the velocity distribution in the stream, are taken into account in such a model by 
an effective coefficient for which an expression is found in terms of the local velocity 
field characteristics. The proposed one-dimensional diffusion model refers to streams in 
which the fluid and impurity particles have different average velocities. The velocity of 
convective transport in this model does not equal the mean stream velocity, which distin- 
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guishes this model from those in [i, 2]. We follow the methodology in the known work of Tay- 

lor [3]. 

Before presenting the derivation of the equation describing the impurity particle propa- 
gation in the stream, we make some fundamental assumptions within whose framework the present 

investigation is executed. 

We consider the particles in the stream to be considered as a continuous distributed 
continuum possessing density and velocity. We assume the size of the suspended particles 
to be small compared with the characteristic turbulence scales. We limit ourselves to the 
consideration of that case when the volume concentration s is low despite the fact that a 
large quantity of particles is contained in the stream. 

Let us consider the suspension-carrying stream as a two-phase system. Let us write 
the continuity equation for each of the phases 

ap, ff ap,v,~ ~ 0, ( i )  
at Ox= 

O0__A_2 + Op2v2______._~: = O, ~ =  1, 2, 3. 
at axe, 

By introducing the true fluid and particle material densities dl and d2, we can express 
the densities of the separate phases in terms of the parameter s 

p~=(1  --s)d, ,  p 2 = s d v  

Then the second equation in system (i) becomes 

a_!s q_ Osv2= _ O. (2) 
at ax= 

We represent all the quantities in the form of sums of their average values and the 
pulsating components in conformity with the method of describing turbulent flows 

s = ~ + s ' ,  v 2 ~ = ~ + v ~ -  (3)  
Then (2) can be r e w r i t t e n  as f o l l o w s  

a~ , a~ G : - v - ~ : )  _~ a~,7,~, _ - _  a ~ ' , G  (4 )  
[-  - -  - - o  

at ax: ax: ax: 

Here the difference (v:a- v1:) is the relative velocity of the impurities in the carrying 
medium. 

Because of the assumptions made above about the particle size, it can be assumed that 
the horizontal average velocities of the solid particles and the fluid agree, while the ver- 
tical velocities differ by a certain quantity a, i.e., 

v~= = ~ , -  aa~,~, (G~ = O, ~ ~ ~, 6~,~ = 1). (5)  

Here the quantity a is called the hydraulic lumpiness. If the impurity particles are more 
or less identical in size, then the quantity a can be considered constant. 

Taking account of (5) we obtain 

as a7~ as'G~ @s a n t- (6) 
at Ox~ ax: Ox: 

A f u r t h e r  c o n v e r s i o n  o f  (6) c an  be a c c o m p l i s h e d  i f  t he  c o r r e l a t i o n  be tween  t he  p a r a m e t e r s  s '  
and v~a i s  t a k e n  p r o p o r t i o n a l  t o  t h e  g r a d i e n t  o f  t h e  f u n c t i o n  s in  c o n f o r m i t y  w i t h  the  Bous-  
s i n e s q  h y p o t h e s i s  : 

-,  �9 _ ~  a s  (7) 
s v 2 :  - -  : ~ _ a x ~  

In this formula r is the diffusion coefficients tensor which has the following form in the 
case of isotropic diffusion 
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After having used (7), Eq. (6) is written as follows 

o - 7 - - -  o --7 + - o --F " 
(8 )  

Let us examine impurity transport in a plane-parallel stream of depth H. We direct the 
z axis vertically upward and the x axis in the direction of stream motion. The stream velo- 
city vector will have just one nonzero component Vx(Z) , that is, V(Vx(Z) , 0, 0), in correspon- 
dence to the case under consideration. Taking this circumstance into account, (8) can be 
given the following form: 

O's a - -  q- v,, (z) = _ _  ( 9 )  
0--7-- a~ ax Ox --~-~ / + ~ ~ " 

We take as initial condition that the function s = so(x) is known at t = 0 while there is no 
impurity flux at the stream boundaries z = 0 and z = H: 

a s  + a ~ = O .  
Oz 

We s h a l l  h e n c e f o r t h  c o n s i d e r  t he  l o n g i t u d i n a l  s t r e a m  v e l o c i t y  and t h e  t r a n s f e r  c o e f -  
f i c i e n t  in  Eq. (9) o b t a i n e d  no t  t o  d i f f e r  from t h e  c o r r e s p o n d i n g  p a r a m e t e r s  i n  a homogeneous 
s t r e a m  w i t h o u t  i m p u r i t y  p a r t i c l e s .  To a known d e g r e e  t h i s  a s s u m p t i o n  has  been  j u s t i f i e d  
e a r l i e r  by t he  c o n d i t i o n  t a k e n  on t h e  s m a l l n e s s  o f  t h e  p a r t i c l e  volume c o n c e n t r a t i o n .  The 
p r e s e n c e  o f  t h e  s o l i d  p a r t i c l e s  a c t u a l l y  o A t e r s  t h e  s t r u c t u r e  o f  t he  t u r b u l e n t  s t r e a m  and a f -  
f e c t s  i t s  c h a r a c t e r i s t i c s .  A d e r i v a t i o n  o f  t h e  t r a n s p o r t  e q u a t i o n  w i t h  such  i n f l u e n c e  t a k e n  
i n t o  a c c o u n t  i s  g i v e n  i n  [ 4 ] .  

E q u a t i o n  (9) r e f l e c t s  t h e  f a c t  t h a t  t h e  i m p u r i t y  p a r t i c l e  p r o p a g a t i o n  i n  t h e  s t r e a m  i s  
due t o  two c a u s e s :  c o n v e c t i v e  t r a n s p o r t  and t u r b u l e n t  d i f f u s i o n .  Both  t h e s e  p r o c e s s e s  can 
be t a k e n  i n t o  a c c o u n t  wi thLn t he  f ramework of  o n e - d i m e n s i o n a l  d i f f u s i o n  model by i n t r o d u c i n g  
a n e f f e c t i v e  t r a n s f e r  c o e f f i c i e n t  whose magn i tude  depends  on t h e  s t r e a m  v e l o c i t y  p r o f i l e  and 
t he  c o n c e n t r a t i o n  d i s t r i b u t i o n  i n  an  i n t e g r a l  manner .  

Let us use the procedure described in [5] to construct such a model and to derive the 

formula for the effective transfer coefficient. 

We define the mean volume impurity concentration over a stream section by the formula 

<lO> 

Let us multiply (9) by the quantity 1/H and let us integrate with respect to z between the 
limits 0 and 14. We hence neglect the longitudinal turbulent transport which, as estimates 
show, yields a small contribution to the magnitude of the effective coefficient: 

H 

a--'t-- H - U - -  .[ (vx--U) (s- -  O)dz = O. ( I I )  
Ox o 

In this formula U is the mean stream velocity 

| H 

u = - -  Hb[ v: (z),~. (lZ) 

Denoting the difference between the quantities s and @ by ~, using (9) and (ii) as well 
as the conditions on the stream boundaries, we have the following problem for the function 

H 

O~F a - -  8 = -- U - -  -- (vx-- U) + -- -- (~-- U) ,dz, 
ot Oz Oz ~ Ox ~ H Ox 

for z = 0 and z = H 
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O~" 
- 4 - a ~  = - - a O .  (14) 

Oz 

Using successive approximations, we set the average value @ in place of s in the right- 
hand side of (13). The foundation for such an approximation is the fact that for times much 
greater than the diffusion constant H2/Eo (Eo is a typical value of the transport coefficient), 
when the length of the mixture domain becomes much greater than the characteristic linear di- 
mension H, the impurity concentration over the stream depth is almost equilibrated, and only 
small deflections of the local concentrations from its average value exist. These deviations 
are due to the inhomogeneous convective impurity transport because of the velocity profile. 
We obtain as a result of the formulation 

o,r o ( ,  o,v oo O ~  a = - ( v , - -  U) - -  ( 1 5 )  
Ot Oz Oz\. Oz } Ox 

If the notation 

z a 

dz ' ,  p (z) = E (z) r (z) r (z) = exp e(z') 

i s  i n t r o d u c e d ,  then  the  o p e r a t o r  o f  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  z i n  t he  l e f t - h a n d  s i d e  
o f  (15) can be r e p r e s e n t e d  i n  the  s e l f - a d j o i n t  form 

1 0 [ OV ] .  (16) 
L (~) : ~ (z----) Oz v(z) ~ ] 

Using this operator we represent (15) in the form 

L (v)  . . . .  

Ot 
where 

+f, (17) 

00 
f = (v, -- U) - -  

Ox 

Let us seek the solution of the equation obtained in the form of a series in the eigen- 
functions Xn(z) : 

W(t,x,z)= ~ u . ( t ,  x) 

un (t, x) -=- r (z) ~ X .  (z) dz, 

+i Hx.IP = r (z) x~  (z) ~. 

The e i g e n f u n c t i o n s  Xn(z) s a t i s f y  t h e  f o l l o w i n g  S t u r m ~ i o u v i l l e  p rob l em:  

(pX'.)' q-k~ rX,, = O, Xn = Xn (z), 

gX',,+aX,,=O, z = O ,  z = t t .  

Here %n are eigenvalues of the problem mentioned. 

Using (18), we write (ii) in the form 

where 

I ~. a,, Ou.(t, x) =0, 
o---# + -h- o, 

H 

o = o (t, x), a .  = .( ( o . -  u) x .  (z) az. 
0 

(18) 

(19) 

(20) 
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To determXne the unknown functions Un(t, x) which are the coefficients of the series 
(18), we multiply (17) by rXn and integrate with respect to z between 0 and H. Taking ac- 
count of the boundary conditions (14) and (19), we obtain an equation for the functions 
Un(t , x) 

Ou. ~2 1 
Ot' § n Un = - - f f  ( b n O - -  fn), (21) 

Here 

u.  = u,, (t, x). 

b. = a [ r  (0) X .  (0) - -  �9 (/4) X .  (H)], 

n dO 
I .  = ,  r ( z ) /X . (z )  az = c. Ox 

0 

H 

c. = j" r (z) (v~- u) x .  (z) az. 
o 

Taking account of the zero initial condition for the function un(t, x), the solution of this 
equation has the form 

00 b. 
u. q, z) = c. i H ~ exp [ -- ~,~ (t -- I:)] dr + - O exp [- (t - - ~ .  Ox H ~ (22) dr. 

Substituting the expression found for the function Un(t, x) into (20), we arrive at an inte- 
grodifferential equation to determine the mean value O(t, x) of the volume impurity concen- 
tration: 

r~ 

anb.  ~ 7~ (t dr,  ' W ~ S exp t - -  ~'~ ( t - -  1:)] dr -= j" exp [-- X" O=O oe oe § ~ ,  Hx.I~ o a*  "-' ~ --T)I Ot -r-U Ox (23) . = ,  ~X.fJ o 

o = o(t, x). 
The equation obtained describes the distribution of the mean concentration O(t, x) over 

the stream depth. By solving it we can find not only the particle concentration distribution 

over the stream depth by using (18), but also 

~ u.(t,x) 
= o + x .  (z). 

.=l llXdl' 
The asymptotic solution of (23) as t -~ ~ is of interest. The fact is that the asymptotic 

distribution of the impurity particle concentration in a stream is established, in practice, 
sufficiently rapidly after the beginning of the process, hence the solution of the correspond- 
ing equation can be used to describe the process in almost the whole time span. For t ~ ~ 
Eq. (23) simplifies considerably: 

at  Ox ax" 

Here 

1 ~1 a.c. (25) 
K = m =, 

and 

--~.-.I anb. (26) 
v = v +  _ 

Expression (24) is a one-dimensional diffusion equation in which K is the coefficient of 
longitudinal diffusion taking account of the convective and turbulent transport mechanisms, 
and V is the velocity of convective impurity particle transport. Both these parameters ef- 
fectively take account of the local transport mechanisms and appear in the one-dimensional 
model as analogs of the corresponding parameters of the one-dimensional molecular diffusion 
equation. However, the magnitude of the effective coefficient exceeds the value of the mo- 
lecular and turbulent diffusion coefficients many times. This is explained by the fact that 
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the difference between the averaged and mean stream velocities is much greater than the velo- 
city fluctuations and the inhomogeneity of the velocity field is the main reason for the in- 
crease in the length of the mixing domain. 

If the impurity particles do not settle, i.e., the quantity a is zero, then the magni- 
tude of the parameter bn vanishes and, therefore, V = U, i.e, the velocity of convective 
transport of a substance agrees with the mean stream velocity. If the rate of particle set- 
tling differs from zero, then the convective impurity transport occurs at a velocity not equal 
to the mean stream velocity, where its difference becomes more noticeable with the growth in 
the hydraulic lumpiness of the particles. It can be shown that the velocity V is less than 
the mean stream velocity. 

As a simple illustration, let us consider the problem of propagation of an impurity 
which has been introduced in a stream at the origin x = 0 at the time t = O. This corresponds 
to the following initial and boundary conditions 

0(0 ,  x) := s06 (x), O ( t , ~ o o ) ~ O .  

Here So is the quantity of the impurity introduced, and 6(x) is the delta function. 

The solution of (24) in a coordinate system moving with the velocity V has the form 

O(x, t)= s~ [ (x-Vt)2 ] (27) 
21#----- ~ exp 4Kt " 

It follows from this solution that the maximum value of the concentration of the settling 
impurities is shifted at a velocity different from the mean stream velocity. This circum- 
stance should be taken into account in measuring the mean stream velocity by inserting im- 
purities. 

NOTATION 

01, 0=, densities of liquid component and impurity particles; v~ and v=~, liquid and 
~mpurity velocity components; dl and d2, true component densities; s, volume concentration; 
s and s', averaged and fluctuating concentration components; v~ and v~, averaged and pulsat- 
ing velocity components; e~B , tensor of the diffusion coefficients; a, hydraulic lumpiness; 
H, channel width; @, mean volume impurity concentration over the stream section; U, mean 
stream velocity; Xn, An, eigenfunctions and eigenvalues of the Sturm-Liouville problem; K, 
effective coefficient of diffusion; t, time; x~, space variable. 
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